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Rotation interval from a time series 

R S MacKay 
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK 

Received 21 May 1986 

Abstract. A very useful concept for two-frequency dynamical systems is the rotation interval. 
In this paper a method is proposed and tested numerically for estimating it from a time series. 

1. Introduction 

The rotation interval is a point or closed interval in R, which we write as [ p - ,  p + ] ,  
allowing p- = p+ as a special case, defined (as will be recalled in $ 2 )  for a variety of 
‘two-frequency’ dynamical systems, including: 

(i)  maps of a circle to itself of degree 1 (not necessarily invertible), 
(i i)  ‘Birkhoff attractors’ for dissipative twist maps of a cylinder, 
(iii) ‘Birkhoff zones of instability’ for area-preserving twist maps of a cylinder, 
(iv) 3~ flows corresponding to (i i)  and (iii). 

These are relevant to many physical systems, in particular those which can be regarded 
as two coupled oscillators, or as modulational instabilities on periodic behaviour. 

The rotation interval has strong implications for the dynamics. For example, in 
each of the above cases: 

(a) For every rational p / q  E [ p - ,  p+ ]  there is a periodic orbit of rotation number 
p / q  ((i)  Newhouse et a1 (1983); (ii) Casdagli (1985), Le Calvez (1985); (iii) Birkhoff 
(1913).) 

(b) For every irrational p E [ p - ,  p+]  there is an invariant set of rotation number p 
((i)  Chenciner et a1 (1984); (ii) Casdagli (1985), Le Calvez (1985); (iii) Aubry and Le 
Daeron (1983), Mather (1982), Katok (1982).) 

Furthermore, at least in the case of circle maps: 
(c) if the rotation interval is not just a single point then the system has topological 

chaos (i.e. positive topological entropy) (Block et a1 1980). This is true for zones of 
instability too (Boyland 1986, Boyland and Hall 1985), and probably for Birkhoff 
attractors. 

(d) Scaling laws have been predicted (MacKay and Tresser 1986) and verified 
(Gambaudo et a1 1985) for the growth of the rotation interval at the transition to 
topological chaos. The behaviour of the rotation interval depends on the type of route 
followed, thus providing a footprint for the route. 

The only problem with the rotation interval is that its definition depends on the 
whole system. One orbit does not suffice. Thus it is not clear how to estimate it from 
a time series, which is all one might get from a physical experiment, for example. 

One way to do this, proposed by MacKay and Tresser (1986), is to use the inclusion 

[lim inf (8, - 8,) /n,  lim sup (en - 8 , ) / n ]  c [ p - ,  p+]  
n-m n-m 
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for all orbits in the appropriate set. This method has the serious drawback, however, 
that for any invariant measure p the set of points for which the above limits are 
different has p-measure zero, by Birkhoff’s ergodic theorem (Birkhoff 1931). Thus if 
p- # p+ this method is unlikely to reveal the fact. 

Another method, proposed by Casdagli (1986), is to choose an integer N = 10. Then 

p- - 1 /  N s inf ( e n + N  - O n ) /  N sup ( e n + ,  - e n  ) / N  =Z p+ + 1 /  N* 
n n 

This seems to give results close to optimal, but if one increases N to try and improve 
the precision, the results deteriorate; the comments of the previous paragraph apply. 

Another method proposed by MacKay and Tresser (1986) is to plot the points 
(0, - m, e,,, - m ) ,  for m, n E Z, draw in the least monotone upper bound and greatest 
monotone lower bound, and calculate their rotation numbers r + ,  r- . Then [ r - ,  r+ ]  c 
[ p - ,  p i ] .  But this method suffers from the effect of noise, which broadens [ r - ,  r ,] .  

In this paper a simple result is proved, which provides an estimate of the rotation 
interval from within, and appears to give good estimates without much work. 

2. Definitions 

Definition 1 .  For a monotone map g : R + R with g (  6 + 1 )  = g (  e )  + 1 

exists for all 8 E R and is independent of 0 (PoincarC 1885), and is called the rotation 
number of g .  

Definition 2. Given a lift f of a degree 1 circle map, f( 6 + 1) =f(  0 )  + 1 ,  not necessarily 
invertible, define its monotone bounds f* by 

f + ( e )  = supf(e’) 
e ’ s  e 

f-( e)  = inf f( e’). 
e * e  

Then the rotation interval off  is defined to be 

p(f) = [ P ( f - ) ,  P(f+)I .  

Equivalently define g+( e )  to be the left-most preimage of 6 under f and g-(  0 )  to be 
the right-most preimage. Then g, are monotone and p ( f )  = [ - p ( g - ) ,  - p ( g + ) ] .  

Definition 3. Given a lift f: ( 0 ,  r )  + (e ’ ,  r ’ )  of a dissipative (Os det D f s  h < 1) twist 
map (ae‘ /ar  3 6 > 0) of a cylinder with an annular trapping region (i.e. an annulus 
encircling the cylinder which is mapped into itself), the Birkhofattracror off  is the 
intersection of all compact, connected invariant sets Z separating the ends (Birkhoff 
1932). Given such a set Z, take the highest point of each vertical lying in Z. Then f’ 
induces a monotone map g+ : 0 ++ 8-  on these points. Similarly,f-’ induces a monotone 
map g- on the lowest points of each vertical in Z. The rotation interval of Z is defined 
to be [ - p ( g - ) ,  - p ( g + ) ] .  Note that a circle mapf  can be regarded as the degenerate 
case of a dissipative twist map: 

e i = f ( e )  r ’ = f (  e )  - e 
and then the definitions of rotation interval agree. 
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Definition 4. Given an area-preserving (det O f  = +1) twist map of a cylinder, a zone 
of instability is an annulus bounded by rotational (i.e. homotopically non-trivial) 
invariant circles, containing no others. Its rotation interval is the interval [ p - ,  p+]  
between the rotation numbers of the bounding circles. 

3. Main result 

Theorem. Given an orbit of a circle map, Birkhoff attractor or zone of instability, then 

where 1x1 is the least integer S x  and 1x1 is the greatest integer s x .  

Roo$ The idea in each case is that the integer part of the angle turned through provides 
bounds on the fastest and slowest rates of advance possible. We give the proofs for 
the bound on p + .  The bound on p- follows similarly. 

( i )  For a circle map 

e, - e, s p E z*j-"-" ( en ) - p s o * ~ + " - ~ (  e,) - p s o 
*p(fT-") SP*P+ = p( f+)  s p / ( m  - n ) .  

(ii) For a Birkhoff attractor 

e , - e ,>pEZj . r r i f (m-n) (e , ,  r , , , ) + p c o  

g + " - y e , ) + p s o .  

where .rri(8, r )  = 8. Since f is a twist map this implies that 

Thus 

P+ = - p ( g + )  * p / ( m  - n ) .  

(iii) For a zone of instability, the argument is the same as for a Birkhoff attractor, 
using the fact that the boundaries are graphs over 6 (Birkhoff 1932). One could use 
forward iteration just as well as backward in this case. 

4. Test 

This criterion for the rotation interval was tested for the family of circle maps 

hb(e) = @ + a  - b / 2 ~  sin 277-0. 

In figure 1 the results of 

measuring their rotation numbers using the method described in the appendix, 
( i )  calculating the rotation interval by constructing the monotone bounds f+ and 

(ii) estimating the rotating interval, with the initial condition eo = 0, from 
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b 

Figure 1. Rotation interval for the family of circle maps 

f , , (B)=B+a-b /2 . r r s in2 . r rB  

with U = 0.3, b = 1.0 to 8.0, measured by finding the rotation numbers of the monotone 
bounds (U), and estimated using the criterion of 5 3 with initial condition Bo = 0 (vertical 
bars). 

are compared, for a = 0.3, b = 1.0 to 8.0 in 50 steps. It appears that for many parameter 
values, the two are equal. Sometimes the estimated interval was smaller than the true 
interval, because the chosen orbit did not explore the available space sufficiently. 
Usually, the trouble was that it got attracted to a periodic orbit. A different initial 
condition often reveals more of the rotation interval, e.g. figure 2 is for the same 
parameter values as figure 1 but with eo = 0.5. 

It would be interesting to test this method also on Birkhoff attractors (cf Casdagli 
1986), and on zones of instability. 

1 . 2 1  

-0.81 

1 0  2.0 3.0 4.0 5.0 6 . 0  7.0 8.0 
b 

Figure 2. The same as figure 1 for initial condition Bo = 0.5. 
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5. Practical considerations 

To use this method on time series from physical experiments, one must first be sure 
that one has a 'two-frequency' system. If the system has two obvious oscillations, e.g. 
periodically forced pendulum, then it is clear. 

Otherwise, a general procedure to test this is to form a surface of section plot. 
Measure two variables ( x , y )  every time a third variable z passes through a chosen 
phase, e.g. positive zero crossing. Plot the points (x, , ,  y , )  in the plane. If they form 
something roughly circular then you are in business. If not, you may just need to 
change your choice of variables x and y to get a better projection. They should be 
roughly 90" out of phase. You might get away with measuring one variable x and 
using the previous value of x for y, or some weighted average of the previous few 
values of x. 

The next step is to extract an angle variable e,, from ( x , , , ~ , , ) .  If the surface of 
section plot is roughly circular this should be fairly straightforward, e.g. choose an 
origin 0 inside the circle and measure the angle 6, of the ray from 0 to ( x n ,  y , ) .  You 
must be careful to get the correct integer part of 8,. It is easiest to do if the variable 
z is the fastest oscillating variable. Otherwise you may have to measure x and y at 
some intermediate phases of z in order to count how many revolutions have been made. 

Finally, some cautionary remarks. 
(i)  To apply the criterion for a two-dimensional map one needs twist. This is 

probably almost always satisfied in practice for some choice of angle coordinate. The 
only problem is that you might not have a good choice. 

(ii) The Birkhoff attractor can coexist with other attractors. Thus the rotation 
interval one measures might have nothing to do with the Birkhoff attractor. 

(iii) One must let transients die away to be sure that one is in the Birkhoff attractor, 
before estimating its rotation interval. Actually Birkhoff attractors are not necessarily 
attracting, so this could be a problem. 

(iv) Birkhoff attractors do not necessarily have a dense orbit, so they can contain 
a lot of transient behaviour and the estimated rotation interval may be much smaller 
than the true one. 

I intend to test this method of measuring the rotation interval on a system of two 
coupled electronic oscillators. 
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Appendix 

For a monotone map g : R + R with g( 6 + 1) = g( 6) + 1, the following algorithm esti- 
mates the rotation number very efficiently. At every stage p ( g )  E [ p - / q - ,  p + / q + ] ,  and 
this interval has width l /q-q+.  
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Choose any Bo, evaluate 8 ,  = g(Oo), and let q* = 1, p -  = Le,], p +  = [ e , ] .  Repeat the 

Evaluate 
If it is zero then p ( g )  = ( p + + p - ) / ( q + + q - ) ;  exit. 
If it is positive replace q+ , p +  by q+ + q- , p +  + p -  . 
If it is negative replace q - ,  p -  by q+ + q- , p +  + p -  . 

following until q-q+ is large enough. 
- p +  - p -  - Bo. 
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